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ABSTRACT
Cross-domain Named Entity Recognition (NER) aims to transfer
knowledge from the source domain to the target, alleviating expen-
sive labeling costs in the target domain. Most prior studies acquire
domain-invariant features under the end-to-end sequence-labeling
framework where each token is assigned a compositional label (e.g.,
B-LOC). However, the complexity of cross-domain transfer may be
increased over this complicated labeling scheme, which leads to
sub-optimal results, especially when there are significantly distinct
entity categories across domains. In this paper, we aim to explore
the task decomposition in cross-domain NER. Concretely, we sug-
gest a modular learning approach in which two sub-tasks (entity
span detection and type classification) are learned by separate func-
tional modules to perform respective cross-domain transfer with
corresponding strategies. Compared with the compositional label-
ing scheme, the label spaces are smaller and closer across domains
especially in entity span detection, leading to easier transfer in
each sub-task. And then we combine two sub-tasks to achieve the
final result with modular interaction mechanism, and deploy the
adversarial regularization for generalized and robust learning in
low-resource target domains. Extensive experiments over 10 diverse
domain pairs demonstrate that the proposed method is superior
to state-of-the-art cross-domain NER methods in an end-to-end
fashion (about average 6.4% absolute F1 score increase). Further
analyses show the effectiveness of modular task decomposition
and its great potential in cross-domain NER. Our code and data are
available at https://github.com/AIRobotZhang/MTD.
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1 INTRODUCTION
Named Entity Recognition (NER) is a major task in information
extraction, benefiting web search queries [8, 10, 26, 44], question
answering [19, 23] and so forth. NER aims to detect entity spans
and classify these spans into predefined categories, such as person,
location and organization. Due to expensive labor costs in manual
labeling, cross-domain NER has attracted increasing research inter-
ests, devoting to transferring knowledge from the source domain
to low-resource target ones with only few labeled data.

In order to perform cross-domain transfer, prior competitive stud-
ies [4, 12, 45] focus on capturing domain-invariant features under
the end-to-end NER sequence-labeling framework by label repre-
sentation [37] and parameters transfer [13, 22]. They mainly learn
both domain-specific and independent features through private
and shared domain components based on the monolithic tagging
scheme where each token is assigned a compositional label (e.g., B-
LOC). However, this monolithic sequence labeling framework is still
challenging in cross-domain NER as it not only requires one model
to decide the entity span and type simultaneously with a larger
label space, but also to transfer two entangled information (entity
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Figure 1: Task decomposition holds the smaller domain gap
in each sub-task than sequence labeling. Arrows in (a) only
show the cross-domain transfer diagram instead of training
procedure. Two sub-tasks in our framework are parallel.

span and type) across domains, as shown in Figure 1(a). In addition,
as shown in Figure 1(b), there are more private labels between the
source and target domain under the sequence labeling framework
due to the compositional labeling, which causes the great obstacle
for cross-domain transfer. Therefore, the acquisition of domain
invariance under the monolithic sequence labeling is sub-optimal
in cross-domain NER due to complex labeling scheme especially
with distinct entity categories across domains. Overall, the standard
sequence-labeling paradigm is not ideal in cross-domain NER, as
it enlarges the label space and increases the complexity of cross-
domain transfer under this end-to-end monolithic learning process.

It is widely known that NER task can be viewed as a combination
of two sub-tasks, entity span detection and entity type classification.
Our goal in this paper is to explore modular task decomposition for
more effective cross-domain transfer, which as a result simplifies the
learning process, maintains the appropriate transfer complexity and
needs less annotation effort. Intuitively, the individual sub-tasks are
significantly easier to transfer since entity span detection sub-task
shares the same label set across domains and entity type classifi-
cation sub-task owns less private labels between the source and
target domain than standard NER sequence labeling, as depicted in
Figure 1(c). Thus, each sub-task holds the smaller cross-domain gap
and simpler label space across domains compared with monolithic
learning process, suggesting that easier domain transfer and less
annotations are required for reliable performance.

Methodologically, we use two different encoders to extract their
distinct contextual representations from two sub-tasks for sepa-
rate outcomes, and then combine them to achieve the final result.
Specifically, we devise the corresponding cross-domain strategies
in each sub-task for transferring entity span and type information
separately: (1) Entity span detection sub-task which has a common
label set across domains, seeks to locate entities in the text. For
simplicity, we share all model parameters including the final output
layer across domains for transfer. (2) For entity type classification
sub-task, it determines the entity category for each token. As dif-
ferent domains have distinct pre-defined categories which leads to
the obvious domain discrepancy and transfer barrier, we only share
encoder parameters but with specific classification head for individ-
ual domains. To compensate efficiently for the domain discrepancy

in this sub-task, we construct the intermediate augmented domain
by a fixed ratio-based mixup on the top of encoder representations
between the source and target domain, and then send the interme-
diate features into a new classification head for minimizing the gap
across domains.

NER task decomposition makes the explicit interaction of sub-
tasks possible compared with monolithic NER sequence labeling.
Two sub-tasks both have the non-entity label “O”, and linguistic
features are not specific to tasks in low-layer neural network. Thus,
we explore these shared information to mutually reinforce two sub-
tasks and then propose a modular interaction mechanism including
dual-loss re-weighting and linguistic consistency learning. Besides,
adversarial regularization is deployed for generalized and robust
training in low-resource target domains. The major contributions
of this paper are summarized as follows:
• Instead of prior monolithic sequence labeling paradigm, we ex-
plore the modular task decomposition in cross-domain NER,
which effectively contributes to the transfer with tailor-designed
cross-domain strategies in each sub-task (e.g., the shared output
layer and the intermediate augmented domain), inspiring a new
direction for cross-domain NER.

• The modular interaction mechanism is designed for the mutual
reinforcement of sub-tasks, and adversarial regularization guaran-
tees the robust learning on limited labeled data of target domains.

• We evaluate our method on 10 diverse domain pairs and results
indicate that modular task decomposition leads to consistent
improvements (about average 6.4% absolute F1 score). Further
analyses show that our method with 40% target domain data
can achieve the comparable performance as the previous SOTAs
with 100% data, which confirms the notable superiority of our
approach in low-resource scenario.

2 RELATEDWORK
We survey related work along two dimensions: (1) cross-domain
named entity recognition, (2) task decomposition in NLP and CV.
Furthermore, We would like to elaborate their differences from our
proposed method.

2.1 Cross-domain Named Entity Recognition
BiLSTM-CRF [15] and BERT [6] based methods become the para-
digm in NER due to their promising performances and the end-to-
end learning process. They regard NER as the sequence labeling
task, where each word in a sentence is assigned a compositional
label (e.g., B-LOC, I-LOC). However, most of these works rely on ex-
pensive labeling costs. Besides few-shot NER [5, 9, 34] and distantly
supervised NER [7, 31], cross-domain NER which can handle the
scarcity issue of NER samples in target domains by transfer [22] at-
tracts increasing interests, like the popular cross-domain research
of recommendation [3, 18] and so on. Most existing studies are
based on the sequence-labeling framework for NER cross-domain
transfer. And there are two mainline methods for cross-domain
NER: label representation based and parameters transfer methods.

In line of label representation based approaches, Kim et al. [14]
used label embeddings as the features to map label types across dif-
ferent domains for cross-domain transfer. Wang et al. [37] proposed
a label-aware double transfer learning framework with a variant of
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Figure 2: Overview of Modular Task Decomposition. NER task is divided into two sub-tasks using separate functional modules.
Shared output layer (left) and intermediate augmented domain (right) in two sub-tasks respectively are proposed to lessen the
gap across domains. Modular interaction mechanism with dual-loss re-weighting and linguistic consistency learning is for
mutual reinforcement of sub-tasks. Considering limited labeled data in target domains, adversarial regularization is employed.

maximum mean discrepancy (MMD). Liu et al. [21] introduced a
coarse-to-fine two-step pipeline approach based on entity type label
description representations, mainly focuses on zero-shot settings
and pays less attention to domain discrepancies.

For parameters transfer, some methods [20, 27, 35, 40, 41, 46]
focus on learning both domain-independent and specific features
through shared and private domain components with knowledge
distillation [40] or domain prediction task [46], etc. Jia et al. [12]
considered language model task as a bridge for NER domain trans-
fer. Jia and Zhang [13] presented amulti-cell compositional network
to model each entity type using separate cell state, learning domain-
invariant features in the entity level. Liu et al. [22] released a new
dataset CrossNER, containing five diverse domain datasets with
specialized entity categories for different domains, and proposed
competitive baselines for cross-domain transfer. Chen et al. [4]
studied cross-domain data augmentation for NER task by domain
mapping. They transformed the data representation from high re-
source to a low-resource domain by learning the text pattern (e.g.,
style). Zhang et al. [45] proposed a progressive domain adapta-
tion knowledge distillation method for cross-domain NER. They
designed the adaptive data augmentation based on data with the
same label across domains. And then a multi-grained MMD and
knowledge distillation are applied to perform domain adaptation.

2.2 Task Decomposition
In the natural language processing (NLP) and computer vision
(CV) communities, decomposing the compositional task into sin-
gle sub-tasks is a popular paradigm for coping with the existing
issues of original monolithic task. In joint entity and relation ex-
traction, Yu et al. [43] decomposed the joint extraction task into
head-entity extraction, and tail-entity and relation extraction to
reduce the redundant entity pairs and consider the important in-
ner structure in the process of extracting entities and relations.
In standard named entity recognition, Shen et al. [32] proposed a
two-stage entity identifier which firstly generated span proposals
by boundary regression to locate the entities, and then label the
span with the corresponding entity categories. Li et al. [16] pro-
posed a boundary-aware bidirectional neural networks by firstly

detecting entity spans with pointer network and then performing
span classification. Recently, Wang et al. [36] focused on few-shot
and zero-shot NER and proposed the SpanNER framework, which
firstly detected the entity span and then learned from the natu-
ral language descriptions of entity classes. By this decomposed
framework, SpanNER can enable the identification of never-seen
entity classes with label description. These works mainly decom-
posed the NER task to tackle existing problems in NER systems, e.g.,
nested entity, long entity, boundary tag sparsity, lacking of global
decoding information. For multi-task learning, prior studies decom-
posed the main task into sub-tasks as auxiliary tasks to enhance
the representations for main task. Aguilar et al. [1] proposed to
learn NER main task together with named entity segmentation and
categorization task, which extracted relevant features to improve
the main task. Li et al. [17] introduced a novel interaction network
to support information sharing between entity boundary detection
and type prediction tasks to enhance the performance of the NER
main task. In object detection, Perez-Rua et al. [29] decomposed the
one-stage CentreNet [47] into class-generic and specific parts for
adaptation to the Incremental Few-Shot Detection problem. Xie
et al. [39] divided the task into two stages and proposed an oriented
region proposal network for reducing the expensive computation
during generating proposals.

In this paper, we decompose the monolithic NER task into two
sub-tasks for dealing with the great transfer obstacle in prior cross-
domain NER methods. Together with our tailor-designed transfer
strategies in each sub-task, our modular task decomposition frame-
work can perform more effective transfer and achieve the new
SOTA in cross-domain NER. To the best of our knowledge, there is
currently no specific research for exploring the task decomposition
in cross-domain NER. Our work mainly inspires a new perspective
on cross-domain transfer and shows task decomposition is more
suitable than monolithic learning process in cross-domain NER,
which is completely different from existing work introduced above.

3 METHODOLOGY
In this section, we first introduce the studied problem (Sec. 3.1) and
then describe our proposed framework for cross-domain NER.
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Figure 2 illustrates the architecture of modular task decomposi-
tion. NER task is decomposed into entity span detection (Sec. 3.2)
and entity type classification (Sec. 3.3) sub-task for respective
cross-domain transfer by separate functional modules. To mutually
reinforce each other for sub-tasks, we develop a modular interac-
tion mechanism (Sec. 3.4) where the dual-loss re-weighting and
linguistic consistency learning are designed. As the fact of limited
labeled data in target domains, target-domain adversarial regu-
larization (Sec. 3.5) is applied for smoothing decision boundaries,
achieving robust training. Finally, the training optimization and
inference procedure (Sec. 3.6) are presented.

3.1 Problem Formulation
We denote 𝑋 = 𝑤1,𝑤2, ...,𝑤𝑁 as a sentence, where 𝑤 𝑗 is the j-th
word in sentence 𝑋 . An entity e in the sentence 𝑋 is a span of
the sentence: e = {(𝑤𝑠𝑡𝑎𝑟𝑡 ,𝑤𝑠𝑡𝑎𝑟𝑡+1, ...,𝑤𝑒𝑛𝑑 ), 𝑙𝑒 }, where 𝑙𝑒 ∈ C is
an entity type (category), e.g., person, location. C is a set of entity
type. Named entity recognition (NER) aims to find the entity e in
the sentence.

For the cross-domain NER, there are 𝑁S labeled sentences in the
source domain S and 𝑁T labeled sentences in the target domain T .
𝑁U unlabeled sentences in the target domain T may be available
but are not necessary. The sets of entity type (category) in the
source and target domain are CS and CT respectively. Our goal is to
transfer information from the source domainS to the target domain
T . Specifically, we focus on transfer from the high-resource domain
to low-resource domain, i.e., 𝑁T ≪ 𝑁S . And entity categories are
different in the source and target domain, i.e., CS ≠ CT . The cross-
domain experiment in this paper is more challenging and meets
the real-world cross-domain scenario.

3.2 Entity Span Detection Sub-task
This sub-task adopts BERT [6] as backbone and shares the output
layer across domains for lessening the domain discrepancy in entity
span detection.

3.2.1 Embedding and Encoding Layer. Given an input sentence𝑋 =

<𝑤1,𝑤2, ...,𝑤𝑛> from the source or target domain, we can extract
the specific hidden sequence representations𝐻𝑒𝑠𝑑 = <ℎ1, ℎ2, ..., ℎ𝑛>
∈ R𝑛×𝑟 of all words as:

𝐻𝑒𝑠𝑑 = BERT(𝑋 ) (1)

The hidden representations can be notated as 𝐻S
𝑒𝑠𝑑

∈ R𝑙×𝑟 , 𝐻 T
𝑒𝑠𝑑

∈
R𝑚×𝑟 for source (𝑙 tokens) and target (𝑚 tokens) domains respec-
tively. 𝑟 is the last hidden layer dimension.

3.2.2 Output Layer. Given the hidden representations of 𝑋 in the
last layer of encoder: 𝐻𝑒𝑠𝑑 = <ℎ1, ℎ2, ..., ℎ𝑛>, we use the Softmax
function to model tagging decisions and then define the entity span
distribution for each word𝑤𝑖 :

𝑝 (span𝑘 |𝑤𝑖 ) =
exp{w⊤

𝑘
ℎ𝑖 + 𝑏𝑘 }∑𝑐1

𝑗=1 exp{w
⊤
𝑗
ℎ𝑖 + 𝑏 𝑗 }

(2)

where [w𝑘 ;𝑏𝑘 ] are parameters of classification head specific to the
k-th entity span class span𝑘 . Then the probability that𝑤𝑖 belongs to
the k-th class is 𝑝 (span𝑘 |𝑤𝑖 ). As shown in Figure 2 (left), [w𝑘 ;𝑏𝑘 ]
are shared between the source and target domain to bridge the

… include Sun Ra Visits Planet Earth , …

Target domain
… other than Britain until …

Source domain

art   album   loc    O
[  0,      1,      0,    0  ] 

loc misc O
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[ ,  0 ]

loc                 misc art       album
[  ,   0,   0,   ] 
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Figure 3: An example of the composite operation ⊞ for label
mixup in the intermediate augmented domain.

domain gap since the number of classes 𝑐1 in entity span detection
sub-task is domain-independent. Here 𝑐1 is set to 3, i.e., span𝑘 ∈
{B, I,O}. The cross entropy loss is used for training on 𝑋 :

L𝑠𝑝𝑎𝑛 = − 1
|𝑋 |

𝑛∑︁
𝑖=1

𝑐1∑︁
𝑘=1

𝑦𝑖,𝑘 log(𝑝 (span𝑘 |𝑤𝑖 )) (3)

where 𝑦𝑖,𝑘 is the k-th element in 𝑦𝑖 , and 𝑦𝑖 is the one-hot span label
of𝑤𝑖 . Specifically, the training losses in source and target domains
are marked as LS

𝑠𝑝𝑎𝑛 and LT
𝑠𝑝𝑎𝑛 respectively.

3.3 Entity Type Classification Sub-task
In this sub-task, another BERT backbone is exploited, and a fixed
ratio-based mixup in the output layer is proposed to construct an in-
termediate augmented domain for handling the obvious discrepancy
between the source and target domain in entity type classification.

3.3.1 Embedding and Encoding Layer. Similarly, the last hidden
representations in the source and target domain are notated as
𝐻S
𝑒𝑡𝑐 ∈ R𝑙×𝑟 , 𝐻 T

𝑒𝑡𝑐 ∈ R𝑚×𝑟 respectively.

3.3.2 Output Layer. Given the hidden representations in the last
layer: 𝐻𝑒𝑡𝑐 = <ℎ1, ℎ2, ..., ℎ𝑛>, we also use the Softmax function to
model the entity type distribution for word𝑤𝑖 :

𝑝 (type𝑡 |𝑤𝑖 ) =
exp{w⊤

𝑡 ℎ𝑖 + 𝑏𝑡 }∑𝑐2
𝑗=1 exp{w

⊤
𝑗
ℎ𝑖 + 𝑏 𝑗 }

(4)

where [w𝑡 ;𝑏𝑡 ] are parameters of classification head specific to the
t-th entity type class type𝑡 . Then the probability that𝑤𝑖 belongs to
the t-th class is 𝑝 (type𝑡 |𝑤𝑖 ). 𝑐2 is the number of entity categories.
As shown in Figure 2 (right), [w𝑡 ;𝑏𝑡 ] are not shared but specific to
the source and target domain because of distinct entity categories
across different domains (e.g., type𝑡 ∈ {location, ...,O} in the source
domain, type𝑡 ∈ {artist, ...,O} in the target domain). Then this sub-
task training loss on 𝑋 is as follows:

L𝑡𝑦𝑝𝑒 = − 1
|𝑋 |

𝑛∑︁
𝑖=1

𝑐2∑︁
𝑡=1

𝑦𝑖,𝑡 log(𝑝 (type𝑡 |𝑤𝑖 )) (5)
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where𝑦𝑖,𝑡 is the t-th element in𝑦𝑖 , and𝑦𝑖 is the one-hot type label of
𝑤𝑖 . Concretely, the training losses in the source and target domain
are LS

𝑡𝑦𝑝𝑒 and LT
𝑡𝑦𝑝𝑒 .

To reconcile the gap across domains in this sub-task, we con-
struct the intermediate augmented domain by a fixed ratio-based
mixup, inspired by [2, 33]. They utilized the mixup to construct
virtual samples for semi-supervised learning. While we propose
to use two fixed mixup ratios 𝛼 and 𝛽 to fuse the entity informa-
tion from the source and target domain. Then we can get samples
which exist in the intermediate domain between the source and
target domain, bridging two domains for cross-domain transfer.
It is worth noting that we only fuse entity tokens and non-entity
tokens are ignored. Because tokens in the entity carry more domain
information. In order to preserve the linguistic correctness of the
mixed information, we fuse the entities not in the original text but
instead in the hidden representation level. We enumerate every
possible entity token pair between the source and target domain in
a mini-batch. Given a pair of entity token hidden representations
and their corresponding one-hot labels in the source and target
domain: (ℎS

𝑖
, 𝑦S

𝑖
) and (ℎT

𝑗
, 𝑦T

𝑗
), our mixup settings are defined as:

ℎ𝐼𝑡 = 𝛼 × ℎS𝑖 ⊕ 𝛽 × ℎT𝑗

𝑦𝐼𝑡 = 𝛼 × 𝑦S𝑖 ⊞ 𝛽 × 𝑦T𝑗
(6)

where ℎ𝐼𝑡 , 𝑦𝐼𝑡 are the fused hidden representation and label in the
intermediate domain. ⊕ is the vector addition, and ⊞ means a com-
posite operation. Figure 3 shows an example of fusing a token label
pair. Britain is a location entity from the source domain and Sun
Ra Visits Planet Earth is an album entity from the target domain.
So five token pairs can be formed between the two entities, and
we take the token pair (Britain, Sun) for example. One-hot label 𝑦S

𝑖

= [1, 0, 0] (w.r.t., [location,misc,O]) and 𝑦T
𝑗
= [0, 1, 0, 0] (w.r.t.,

[artist, album, location,O]), non-entity type O is discarded before
mixup. For the composite operation ⊞, we define it as: merging
values of shared categories between the source and target domain
and concatenating the private categories. In figure 3, location (loc)
is a shared entity category.

Similarly, we get the k-th entity type probability 𝑝 (type𝑘 |ℎ𝐼𝑡 ) for
the fused representation using Equation 4, but with specific classi-
fication head parameters [w𝑡 ;𝑏𝑡 ]. Because the token label 𝑦𝐼𝑡 after
mixup is soft, we use the common soft label loss – Kullback-Leibler
divergence for training in the intermediate augmented domain as
shown in Equation 7, where 𝑦𝐼

𝑡,𝑘
is the k-th element in 𝑦𝐼𝑡 .

L𝐼 =
∑︁

𝑘
𝑦𝐼
𝑡,𝑘

log
𝑦𝐼
𝑡,𝑘

𝑝 (type𝑘 |ℎ𝐼𝑡 )
(7)

3.4 Modular Interaction Mechanism
Task decomposition makes the explicit interaction between two
sub-tasks possible. We propose the modular interaction mechanism
which comprises of dual-loss re-weighting and linguistic consis-
tency to reinforce the sub-task correlation.

3.4.1 Dual-loss Re-weighting. In entity type classification sub-task,
we should pay more attention to the entity words (tokens) and
exploit the entity boundary information from entity span detection

… …  B  … …

Entity Span Detection Entity Type Classification
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I

O loc artO
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Figure 4: An example of dual-loss re-weighting.

sub-task. Thus we use the entity probability of each token 𝑤𝑖 in
another sub-task to strength the importance of entity words in the
loss L𝑡𝑦𝑝𝑒 with 𝛾

𝑠𝑝

𝑖
as:

L𝑡𝑦𝑝𝑒 = − 1
|𝑆 |

𝑛∑︁
𝑖=1

𝛾
𝑠𝑝

𝑖

𝑐2∑︁
𝑡=1

𝑦𝑖,𝑡 log(𝑝 (type𝑡 |𝑤𝑖 ))

𝛾
𝑠𝑝

𝑖
= 1 − 𝑒 logits

𝑠𝑝

𝑖
(O)/𝜏∑

𝑘∈{B,I,O} 𝑒
logits𝑠𝑝

𝑖
(𝑘)/𝜏

+ b

(8)

where b is a constant number dominating the weighted magnitude,
logits𝑠𝑝

𝑖
(O) is the logit value of class “O" in entity span detection

sub-task and 𝜏 is a temperature parameter that controls the distribu-
tion smoothness. Intuitively, a smaller logits𝑠𝑝

𝑖
(O) means the higher

probability of being an entity token, assigns the greater weight 𝛾𝑠𝑝
𝑖

on the entity typing loss of𝑤𝑖 . Similarly, for entity span detection
sub-task, we expect to recall more entity spans by greater weights
on entity words with the heterogeneous information from entity
type classification sub-task, thus re-weighting the entity span loss
of each token𝑤𝑖 in L𝑠𝑝𝑎𝑛 as follows:

L𝑠𝑝𝑎𝑛 = − 1
|𝑋 |

𝑛∑︁
𝑖=1

𝛾
𝑡𝑝

𝑖

𝑐1∑︁
𝑘=1

𝑦𝑖,𝑘 log(𝑝 (span𝑘 |𝑤𝑖 ))

𝛾
𝑡𝑝

𝑖
= 1 − 𝑒 logits

𝑡𝑝

𝑖
(O)/𝜏∑

𝑘∈{location,...,O} 𝑒
logits𝑡𝑝

𝑖
(𝑘)/𝜏

+ b

(9)

where logits𝑡𝑝
𝑖
(O) is the logit value of class “O" in entity type

classification sub-task. Thus, the smaller non-entity logit value
is equivalent to the greater weight 𝛾𝑡𝑝

𝑖
on the entity span loss of

𝑤𝑖 . Finally, LS
𝑡𝑦𝑝𝑒 , LT

𝑡𝑦𝑝𝑒 and LS
𝑠𝑝𝑎𝑛 , LT

𝑠𝑝𝑎𝑛 can be modified by
instantiating the L𝑡𝑦𝑝𝑒 and L𝑠𝑝𝑎𝑛 in Equation 8, 9 respectively.

Figure 4 gives an example of dual-loss re-weighting for the entity
token Sun. The losses in two sub-tasks are firstly calculated based
on the logit output and ground truth. Then the loss weights in each
sub-task are computed with the Equation 8 (9) based on the logit
value of non-entity category O from another sub-task. Finally, we
can optimize the model based on the re-weighted loss.
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3.4.2 Linguistic Consistency. Neural network low-layer features
appear not to be specific to a particular task but general [42], such
as morphology and syntax in NLP. To learn the linguistic features
consistently, we share the low layers between two sub-tasks and
make high-level representations specific. Because we use the pre-
trained language model BERT as backbone, and the implementation
of sharing partial layers between two BERTs is challenging. We
approximate it by forcing the two BERTs to express similar features
in the low layers with mean squared error loss as:

L𝑆ℎ𝑎 =

𝐿∑︁
𝑘=1

MSE(𝐻𝑘
𝑠𝑝𝑎𝑛, 𝐻

𝑘
𝑡𝑦𝑝𝑒 ) (10)

where 𝐿 is the number of shared layers from the low to high layer,
𝐻𝑘
𝑠𝑝𝑎𝑛 and 𝐻𝑘

𝑡𝑦𝑝𝑒 are the k-th layer hidden representations in two
BERTs corresponding to two sub-tasks.

3.5 Target-domain Adversarial Regularization
Due to low-resource target domains, we expect to avoid overfitting
and learn the robust model. Here we leverage adversarial training
to smooth the decision boundaries, unleashing the full potential of
limited data. Concretely, we add the perturbations 𝜖 to the BERT
embeddings 𝑒 of each token (word) in the target domain. Then the
labels of two sub-tasks are employed for regularizing the output
under perturbation:

L𝐴𝑇 1 = − 1
|𝑆 |

𝑚∑︁
𝑖=1

𝑐1∑︁
𝑘=1

𝑦𝑖,𝑘 log(𝑝 (span𝑘 |𝑒1𝑖 + 𝜖1𝑖 ))

L𝐴𝑇 2 = − 1
|𝑆 |

𝑚∑︁
𝑖=1

𝑐2∑︁
𝑡=1

𝑦𝑖,𝑡 log(𝑝 (type𝑡 |𝑒2𝑖 + 𝜖2𝑖 ))
(11)

In fact, the perturbation 𝜖1(2)𝑖 is in the direction with maximum
model output change, which is further defined as:

𝜖1(2)𝑖 = argmax
𝜖𝑖 , | |𝜖𝑖 | |2≤`

L𝐴𝑇 1(2) (12)

Solving the above maximum problemmeans searching for the worst
perturbation while trying to minimize the loss of the model. A
general solution for Equation 12 is developed by a linear approxi-
mation [11, 25] of adversarial perturbation vector 𝜖1(2)𝑖 with a 𝐿2
norm constraint as follows:

𝜖1(2)𝑖 ≈ `
𝑔1(2)𝑖

| |𝑔1(2)𝑖 | |2
(13)

where 𝑔1(2)𝑖 = ▽𝑒1(2)𝑖LT
𝑠𝑝𝑎𝑛 (𝑡𝑦𝑝𝑒) which is efficiently computed by

back-propagation. ` is the size of the perturbation. With such a
perturbation, L𝐴𝑇 1 and L𝐴𝑇 2 can be achieved.

3.6 Optimization and Inference
3.6.1 Training Objectives. For each training step, we sample from
the source and target domain data, and train the models jointly in
the supervised manner by minimizing the total loss:

L = LS
𝑠𝑝𝑎𝑛 + LT

𝑠𝑝𝑎𝑛 + LS
𝑡𝑦𝑝𝑒 + LT

𝑡𝑦𝑝𝑒

+ _(L𝐼 + L𝑆ℎ𝑎 + L𝐴𝑇 1 + L𝐴𝑇 2)
(14)

where _ is the weight coefficient.

Table 1: The statistics of cross-domain NER datasets.

Domain Dataset #Train #Dev #Test #Category

Source
CoNLL2003
(Newswire) 14041 – – 4

Twitter
(Social Media) 4290 – – 4

Target

Politics 200 541 651 9
Science 200 450 543 17
Music 100 380 465 13

Literature 100 400 416 12
AI 100 350 431 14

3.6.2 Inference. The predicted entity is a span <𝑤𝑖 , ...,𝑤 𝑗> with
the category where entity span detection sub-task provides the
entity boundary 𝑦𝑠𝑝𝑎𝑛𝑠 = argmax𝑘 logits𝑠𝑝𝑠 (𝑘), 𝑖 ≤ 𝑠 ≤ 𝑗 , and en-
tity type classification sub-task offers the entity category 𝑦𝑡𝑦𝑝𝑒

𝑗
=

argmax𝑡 logits𝑡𝑝
𝑗
(𝑡), 𝑦𝑡𝑦𝑝𝑒

𝑗
≠ O. That is, span is tagged with the

label of rightmost token. Because implementation of using right-
most label is easy. Its performance is also close to the majority label
of tokens or leftmost one in our experiment, perhaps due to the
encoding ability of BERT. Specifically, the span can not be regarded
as an entity when two sub-tasks conflict. Supposing the entity span
detection detects a span as an entity but another sub-task classifies
it into ‘O’, then the span is not an entity in our method.

4 EXPERIMENTS
We aim to answer the following research questions: (RQ1) Does our
proposed framework outperform state-of-the-art methods signifi-
cantly in cross-domain NER? (RQ2) How much can cross-domain
transfer in ourmethod gain comparedwith themonolithic sequence-
labeling framework? That is, can our method contribute to the
transfer more effectively in cross-domain NER?

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on 10 domain pairs which
transfer from two source domains to five target domains. The two
source domains are CoNLL2003 (English) [30] (a Newswire domain
dataset) and Twitter dataset [24] (Social Media domain). The five
target domains are Politics, Natural Science, Music, Literature and
Artificial Intelligence domain datasets released by Liu et al. [22]. The
detailed statistics of datasets are shown in Table 1. We can see that
two source domains are high-resource and five target domains are
low-resource with 100 or 200 training sentences. Because we aim
to transfer from the high-resource source domain to low-resource
target domain, we ignore dev and test datasets in source domains.
The two source domains (Newswire and Social Media) only have
4 general entity categories (i.e., person, location, organization and
miscellaneous) which most public NER datasets contain, so source
domain datasets are easily available. And target domains own only
few labeled data with 9–17 entity categories. Overall, the cross-
domain setting of this paper is more applicable in the real world.
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Table 2: F1 scores on 10 domain pairs which transfer from two source domains (Newswire, Social Media) to 5 target domains
respectively. Extra Data indicates unlabeled target domain data. Boldmarks the highest and Blue shows the absolute increase
compared with prior cross-domain NER baselines.

Extra Data Method CoNLL2003 (Newswire) → Twitter (Social Media) →
Politics Science Music Litera. AI Politics Science Music Litera. AI

No.

BiLSTM-CRF [15] 56.60 49.97 44.79 43.03 43.56 53.64 47.33 48.85 45.23 44.08
Coach [21] 61.50 52.09 51.66 48.35 45.15 55.03 50.22 49.91 44.88 42.98
LM-NER [12] 68.44 64.31 63.56 59.59 53.70 66.99 64.23 61.48 59.09 50.46
BERT-JF [22] 68.85 65.03 67.59 62.57 58.57 67.52 64.51 67.74 61.38 57.05
BERT-PF [22] 68.71 64.94 68.30 63.63 58.88 68.60 62.23 68.06 61.91 54.72

MultiCell-LM [13] 70.56 66.42 70.52 66.96 58.28 66.59 63.79 66.54 59.02 53.82
Style-NER [4] 68.78 63.95 65.43 60.94 58.73 67.33 63.14 67.12 62.06 57.76

Ours
Improv.

76.70
(+6.14)

72.35
(+5.93)

76.10
(+5.58)

69.22
(+2.26)

68.93
(+10.05)

74.62
(+6.02)

71.37
(+6.86)

74.41
(+6.35)

69.67
(+7.61)

64.55
(+6.79)

Yes.
+DAPT
[22]

MultiCell-LM [13] 71.45 67.68 74.19 68.63 61.64 69.13 66.76 74.22 64.88 62.41
Style-NER [4] 71.74 69.11 68.44 62.63 61.76 70.94 68.28 74.40 67.05 63.33
BERT-JF [22] 72.76 68.28 74.30 65.18 63.07 70.78 67.31 68.13 62.69 59.17
BERT-PF [22] 72.05 68.78 75.71 69.04 62.56 70.11 66.87 73.88 66.61 61.12

Ours
Improv.

79.52
(+6.76)

74.82
(+5.71)

79.80
(+4.09)

71.15
(+2.11)

70.41
(+7.34)

75.49
(+4.55)

72.81
(+4.53)

77.43
(+3.03)

70.14
(+3.09)

66.18
(+2.85)

4.1.2 Baselines and Evaluation Metric. We compare the proposed
architecture with the following competitive cross-domain NER
baselines: (1) BiLSTM-CRF [15] combines source domain data and
the upsampled target ones to jointly train the model with word
and character embeddings. (2) Coach [21] performs the coarse-to-
fine detection process to handle unseen types, which is a pipeline
framework. (3) LM-NER [12] integrates the language modeling
(LM) and NER tasks in both source and target domains for cross-
domain transfer. (4) MultiCell-LM [13] investigates a multi-cell
compositional LSTM structure on the top of BERT for learning
domain-invariant features in the entity level. (5) In Liu et al. [22],
BERT-JF jointly fine-tunes BERT on both source and target domain
data with upsampling in the target domain. BERT-PF first pre-
trains BERT on the source domain data, and then fine-tunes it to
the target ones. (6) Style-NER [4] investigates the possibility of
leveraging data fromhigh-resource domains by projecting it into the
low-resource domains for cross-domain NER. For the completeness
of experiments, following Liu et al. [22], before performing cross-
domain transfer, we also continue pre-training the BERT on the
unlabeled target domain-related corpus (i.e., DAPT) for further
experiments. The unlabeled datasets are released by Liu et al. [22]
with millions of samples. We use the F1 score as the evaluation
metric based on exact span matching.

4.1.3 Implementation Details. For fair comparison with competi-
tive baselines (e.g., MultiCell-LM, Style-NER), our method is based
on BERT-base [6]. We tune all hyper-parameters according to the
results on dev sets with grid-search. For each mini-batch, we sample
16 sentences from the source and target domain dataset respectively.
The learning rate is 1e-5, maximum training epoches is 30 and the
seed of random numbers is set to 0. The fixed mixup ratios (𝛼 , 𝛽)
are set to (0.3, 0.7) by tuning from {(0.1, 0.9), ..., (0.9, 0.1)}. b in entity

span detection and type classification sub-task is set to 0.5 and 0
respectively. 𝜏 is tuned from {0.1, 1.0, 10} in two sub-tasks and finally
is set to 0.1 on all datasets except that Politics is 10 in entity span
detection sub-task. 𝐿 is set to 3 by tuning from 0 to 12. We tune `
from {0.2, 0.5, 1.0, 2.0} and set 0.5 on Politics, AI dataset, others are
1.0. _ is set to 0.1. We implement our code with Pytorch based on
huggingface Transformers [38]1. The baseline (except Style-NER)
results of the first five domain pairs in Table 2 are all from Liu
et al. [22]. For other experimental results, we run the official codes
to produce them. Besides partial experimental results in Table 2
and Table 6, other analyses are not using DAPT.

4.2 Experimental Results (RQ1)
Table 2 shows the results of our proposed method compared with
baselines and highlights the best F1 score in bold. We conduct two
groups of experiments without (No.) or with (Yes. +DAPT) extra
unlabeled domain-related corpus. In each group of them, we per-
form cross-domain transfer experiments from two source domains
(CoNLL2003, Twitter) to five target domains respectively. Obvi-
ously, our modular task decomposition significantly outperforms
the state-of-the-art method with large margins on all experiments.

For the case where no extra unlabeled corpus is used (i.e., only
few labeled data in the target domain), we can observe that our
proposed method improves the F1 score with an average increase
of 6.36% compared with the previous SOTA, where the highest
improvement is 10.05% (CoNLL2003 → AI) and the least one also
achieves 2.26% absolute percentage points (CoNLL2003→ Litera-
ture). It demonstrates the effectiveness and strong generalization
of our modular task decomposition for cross-domain NER. In the
AI domain, the significant increase may result from the larger gap

1https://huggingface.co/transformers/
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Table 3: Ablation study of our method on dev sets. Scores are
averaged over five domains (CoNLL2003 as source domain).

Method Dev F1

Ours 74.32

w/o Shared output layer in ESD 73.80
w/o Intermediate augmented domain in ETC 73.18
w/o Modular interaction 73.15

– Dual-loss re-weighting 73.56
– Linguistic consistency 73.87

w/o Adversarial regularization 73.89
w/o All of above components 72.15
SpanNER [36] 71.86
BERT-JF [22] 66.55

between CoNLL2003 and AI. And it is difficult for prior studies to
learn domain-invariant features only based on end-to-end sequence-
labeling scheme. As for the less improvement in the Literature do-
main, the reason is that the entities with writer category occupy
higher proportion in the dataset, which can be easily confused with
person category existing in both CoNLL2003 and Literature.

When the extra unlabeled corpus is available, our method also
gains significant improvements (4.41% F1 score increase). In ad-
dition, it is worth noting that our proposed modular task decom-
position without extra data even outperforms other competitive
baselines using extra domain-related corpus. For 10 domain pairs,
no baselines can always occupy an absolute advantage on them
while our method can keep the superiority consistently.

4.2.1 Ablation Study. To evaluate the influence of each compo-
nent in our method, we conduct the ablation study for further
exploration (see Table 3). From these ablations, we can observe
that: (1) The shared output layer across domains is effective for
domain adaptation in entity span detection sub-task (ESD). As the
source and target domain hold the same label space in ESD, the
sharing operation can preserve more information from the source
domain. (2) The intermediate augmented domain contributes to
1.14% gains of F1 score, we attribute the gains to the bridge role
of the constructed domain between the source and target domain
in entity type classification (ETC). Because the entity categories
from two domains can both be perceived in the intermediate do-
main. (3) Removing modular interaction mechanism leads to 1.17%
declines on F1, which indicates that it is important to enhance the
interaction between two sub-tasks by exchanging heterogeneous
information and linguistic features with dual-loss re-weighting
and linguistic consistency learning. (4) Adversarial regularization
in target domains improves the generalization and contributes to
0.43% increase due to decision boundary smoothing. (5) With only
two separate sub-tasks (w/o All of above components), the perfor-
mance decreases by 2.17%, which reflects the comprehensive effect
of the designed components. (6) Furthermore, we also run BERT-
JF [22] (a sequence labeling framework) on dev sets, which achieves
66.55%. That is, task decomposition can contribute to 5.60% (66.55%
to 72.15%) and our tailor-designed modular strategies based on
this decomposition paradigm can further improve 2.17% (72.15% to

Table 4: Avg F1 score over 5 target domains (CoNLL2003 as
the source) with different number of parameters. B/s refers
to the processed number of batches per second during test.

Method F1 (Avg) #Param Speed
BERT-JF (BERTBASE) 64.52 108.9M 15 B/s
BERT-JF (BERTLARGE) 67.88 334.7M 6.8 B/s

MultiCell-LM (BERTBASE) 66.55 119.5M 2.6 B/s
MultiCell-LM (BERTLARGE) 67.13 344.7M 2.1 B/s
Ours (shared BERTBASE) 71.38 109.3M 9.1 B/s
Ours (two BERTBASE) 72.66 216.6M 6.7 B/s

74.32%). This shows the task decomposition is more suitable as the
basic framework in cross-domain NER and verifies our motivation.

In addition, we also perform experiments on recent low-shot
NER method SpanNER [36], which mainly focuses on few-shot
and zero-shot learning. SpanNER argues that treating each class
as one-hot vector cannot capture the semantic meaning of those
labels. Thus, they design the decomposed framework to utilize
the label descriptions for the detection of novel entity classes. We
adapt SpanNER to our scenario settings with upsampling in the
target domain. Experimental result of SpanNER in Table 3 further
confirms the effectiveness of task decomposition, consolidating our
argument. Lower F1 score of SpanNER compared with our method
originates from its pipeline framework and label description quality
that cannot be guaranteed.

4.2.2 Parameter Analysis. To check whether our improvements
mainly come from more parameters, we show the F1 scores and cor-
responding parameters of the state-of-the-art baselines and ours in
Table 4. We can observe that our method which uses two BERTBASE
encoders with 216.6M parameters still significantly outperforms
the BERT-JF (334.7M) and MultiCell-LM (344.7M) with BERTLARGE.
Furthermore, we share the BERT encoder for two sub-tasks, and
the F1 score decreases to 71.38%. The reason may be that sharing
encoders completely in two sub-tasks hinders learning subtask-
specific information. However, it is still significantly higher than
other baselines. Overall, our proposed method does not mainly
gain from more parameters but the NER task decomposition with
the designed components which leads to easier and more effective
cross-domain transfer in each sub-task. In addition, we present
the test speed of different methods under the same batch size and
experimental environment. We can see that the efficiency of our
method is acceptable. In fact, the two sub-tasks in our method can
be processed in parallel, which will further accelerate the efficiency.

4.3 Experimental Analyses
4.3.1 Gains from the Cross-domain Transfer (RQ2). As shown in
Table 5, we would like to show the performance gain (↑) from the
cross-domain transfer. Therefore, we report the average gain (↑) on
five low-resource target domains before and after using the source
data CoNLL2003. The blue numbers mean only using the target do-
main data and red ones represent using both the source and target
data by cross-domain transfer. We see that our method gains more
increase from the source domain data (4.17% absolute F1 score) than
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Table 5: Gains (F1 score) of target domain from source domain
by transfer. ↑means the increase after using the source.

Without/With
Source domain

CoNLL2003 → five low-
resource domains (Avg)

Twitter → high-
resource BioMedical

MultiCell-LM ↑2.40 (64.15/66.55) ↑1.42 (78.76/80.18)
BERT-JF ↑2.66 (61.86/64.52) ↑1.55 (79.17/80.72)
Style-NER ↑2.13 (61.44/63.57) ↑2.20 (79.60/81.80)

Ours ↑4.17 (68.49/72.66) ↑2.60 (80.83/83.43)

70.33 70.52

Figure 5: F1 score vs. data size in music domain (CoNLL2003
as source domain, averaged over three samplings).

previous sequence labeling based SOTAs. This shows the notable ef-
ficacy of our modular task decomposition in cross-domain transfer.
Because NER task decomposition reduces the transfer complexity
due to the less private labels across domains and only transferring
single entity information (span or type) in each sub-task, contribut-
ing to more effective transfer with our devised modular strategies.
Interestingly, our method without using the source domain data
even significantly surpasses previous SOTAs using source data in
Table 5 (Figure 5 also shows this point). That is because task de-
composition holds the smaller label space and simpler task form in
each sub-task which benefits the low-resource NER a lot.

To further explore the above interesting phenomenon, we per-
form cross-domain transfer in the high-resource scenario, where
Twitter [24] with 4290 training sentences is the source domain
and BioMedical [28] with 3033 training, 1003 dev and 1906 test
sentences is the target. We can see that our method still obtains
2.60% gains, and the advantage of our method without using source
domain over others with the source data is reasonably reduced due
to the rich labeled data in target domain. Overall, we can achieve
more effective transfer despite of low and high-resource scenario.
Our method reaches the more significant advantage over prior SO-
TAs in low-resource scenario, benefits from better performance on
low-resource data and more effective transfer which shows the great
potential of modular task decomposition in cross-domain NER.

4.3.2 Performance vs. Target Domain Data Size. Figure 5 shows
the performance of our approach and two monolithic sequence
labeling based methods (e.g., MultiCell-LM and BERT-JF) with dif-
ferent number of target domain data. Style-NER is not shown due
to its poor target data generation with only few sentences. We
can observe that our proposed method significantly outperforms
other baselines, especially when there are few samples in the target

Figure 6: F1 score vs. iterations in the music domain.

domain. We also train our model directly on the target domain
data without the source domain training samples. We can see that
our method gains more from source domain samples as the target
domain data size decreases, which shows the necessity and effective-
ness of cross-domain transfer in low-resource target domains. As
our model can obtain the abilities of entity span detection and type
classification from the source domain which benefits low-resource
target domains. Furthermore, our method using 40% target data
can achieve the comparable performance as the previous SOTA
using the full data, which shows our notable superiority in the
extremely low-resource scenario due to smaller spaces and more
effective transfer in task decomposition paradigm together with
the designed modular constituents.

4.3.3 Learning Curves during Training. Considering only few la-
beled data in the target domain, we evaluate the robustness and
stability of our method during training. Figure 6 shows the F1 score
vs. training iterations on the music development and test datasets.
Compared with BERT-JF, MultiCell-LM and our method remain
more stable. Moreover, our method does not show the obvious
overfitting and consistently achieves better performance than other
baselines as the training goes. When we remove the target-domain
adversarial regularization (w/o AT) from our method, the learning
curves on development and test sets are at a low level in comparison
with before removal, and tends to decrease as the training goes.
Thus, Figure 6 not only confirms the significant improvements of
our architecture but also shows the robust training process and
powerful generalization ability.

4.3.4 Visualization of Feature Spaces. The hidden representations
reflect the effect of cross-domain transfer and determine the final
task performances. Figure 7 visualizes the hidden vectors of the
monolithic NER sequence-labeling baseline, and our entity span
detection (ESD) and type classification (ETC) sub-tasks. Because of
smaller and closer label spaces across domains in our task decompo-
sition, especially ESD sub-task, we can see that our two sub-tasks
can better capture similar feature distributions across domains, in
comparison with the sequence labeling based method which has
the complex labeling scheme. Two sub-tasks show the closer repre-
sentations across domains on the same class and the relatively clear
decision boundaries, which indicates the effectiveness of modular
task decomposition in cross-domain NER.

Topic 4: Cross Domain IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

309



Figure 7: t-SNE visualization of hidden representations on the music dev set. •marks the source domain and⋆marks the target
domain. Different classes are represented by different colours. Sequence-labeling framework takes BERT-JF as an example.

Table 6: The respective performance of two sub-tasks (entity
span detection, ESD and entity type classification, ETC) with-
out/with extra domain-related data.

No/Yes Extra. P R F1

ESD 88.10/89.13 87.51/87.30 87.80/88.19
ETC 81.22/83.48 78.22/80.56 79.68/81.99

Ours (ESD & ETC) 73.60/76.38 71.78/73.97 72.66/75.14

4.3.5 Error Analysis. Although the proposed method outperforms
the state-of-the-art systems, we would like to analyze the factors
restricting improvements in task decomposition. Therefore, we
show the average performance of each sub-task over five diverse
target domains in Table 6 (CoNLL2003 as the source domain). ETC
sub-task uses the ground-truth entity spans for evaluation with the
predicted entity categories. We observe that the F1 score of ESD
sub-task has achieved 87.80% and ETC reaches 79.68%. Thus, the
bottleneck lies in ETC sub-task because of distinct label sets across
domains and larger label spaces compared with ESD, hindering the
cross-domain and few labeled learning. Because of rich domain in-
formation for better initialization and fast domain adaptation, using
domain-related corpus further improves the F1 scores especially in
ETC, but the improvements of all metrics are limited in ESD. The
reason may be that the model performance has reached a certain
level and then gains little from better initialization with extra data.

5 CONCLUSION AND FUTUREWORK
In this paper, we explore the modular task decomposition to boost
the performance of cross-domain NER. Specifically, we decompose
the monolithic NER task into two sub-tasks: entity span detection
and type classification, and suggest the separate functional modules
for respective cross-domain transfer with the shared output layer
and intermediate augmented domain. Furthermore, we present a
modular interaction mechanism for mutual reinforcement of sub-
tasks, and deploy the adversarial regularization to improve the
generalization and robustness in low-resource target domains. Ex-
perimental results and analyses confirm the effectiveness of our
method. For future work, cross-domain transfer with distinct label

sets is still worth exploring for improving the entity type classifica-
tion which is a key sub-task in task decomposition.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insight-
ful comments and constructive suggestions. This work is supported
by the National Key Research and Development Program of China
(grant No.2021YFB3100600), the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (grant No.XDC02040400)
and the Youth Innovation Promotion Association of CAS (grant
No.2021153).

REFERENCES
[1] Gustavo Aguilar, Suraj Maharjan, A. Pastor Lopez-Monroy, and Thamar Solorio.

2017. A Multi-task Approach for Named Entity Recognition in Social Media Data.
In Proceedings of the 3rd Workshop on Noisy User-generated Text. Association for
Computational Linguistics, 148–153.

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow, Avital Oliver, Nicolas Paper-
not, and Colin Raffel. 2019. Mixmatch: A holistic approach to semi-supervised
learning. In 33rd Conference on Neural Information Processing Systems (NeurIPS
2019). Curran Associates, Inc.

[3] Jiangxia Cao, Jiawei Sheng, Xin Cong, Tingwen Liu, and Bin Wang. 2022. Cross-
Domain Recommendation to Cold-Start Users via Variational Information Bottle-
neck. In Proceedings of the 38th IEEE International Conference on Data Engineering
(ICDE 2022).

[4] Shuguang Chen, Gustavo Aguilar, Leonardo Neves, and Thamar Solorio. 2021.
Data Augmentation for Cross-Domain Named Entity Recognition. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 5346–5356.

[5] Xin Cong, Shiyao Cui, Bowen Yu, Tingwen Liu, Yubin Wang, and Bin Wang. 2021.
Few-Shot Event Detection with Prototypical Amortized Conditional Random
Field. In Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021. Association for Computational Linguistics, 28–40.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings ofthe 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 4171–4186.

[7] Zheng Fang, Yanan Cao, Tai Li, Ruipeng Jia, Fang Fang, Yanmin Shang, and
Yuhai Lu. 2021. TEBNER: Domain Specific Named Entity Recognition with Type
Expanded Boundary-aware Network. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 198–207.

[8] Besnik Fetahu, ShervinMalmasi, Anjie Fang, and Oleg Rokhlenko. 2021. Gazetteer
Enhanced Named Entity Recognition for Code-MixedWebQueries. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Association for Computing Machinery, 1677–1681.

[9] Alexander Fritzler, Varvara Logacheva, and Maksim Kretov. 2019. Few-shot
classification in named entity recognition task. In Proceedings of the 34th

Topic 4: Cross Domain IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

310



ACM/SIGAPP Symposium on Applied Computing. Association for Computing
Machinery, 993–1000.

[10] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. 2009. Named entity recognition in
query. In Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval. Association for Computing Machinery,
267–274.

[11] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
Personalized Ranking for Recommendation. In 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval. Association for
Computing Machinery, 355–364.

[12] Chen Jia, Xiaobo Liang, and Yue Zhang. 2019. Cross-Domain NER using Cross-
Domain Language Modeling. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Association for Computational Lin-
guistics, 2464–2474.

[13] Chen Jia and Yue Zhang. 2020. Multi-Cell Compositional LSTM for NER Domain
Adaptation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 5906–5917.

[14] Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Minwoo Jeong. 2015. New
Transfer Learning Techniques for Disparate Label Sets. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing. Association for
Computational Linguistics, 473–482.

[15] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 260–270.

[16] Fei Li, ZhengWang, Siu Cheung Hui, Lejian Liao, Dandan Song, and Jing Xu. 2021.
Effective Named Entity Recognition with Boundary-aware Bidirectional Neural
Networks. In Proceedings of the Web Conference 2021 (WWW’21). Association for
Computing Machinery, 1695–1703.

[17] Fei Li, Zheng Wang, Siu Cheung Hui, Lejian Liao, Dandan Song, Jing Xu, Guoxiu
He, and Meihuizi Jia. 2021. Modularized Interaction Network for Named Entity
Recognition. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 200–209.

[18] Siqing Li, Liuyi Yao, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Tonglei Guo, Bolin
Ding, and Ji-Rong Wen. 2021. Debiasing Learning based Cross-domain Recom-
mendation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’21). Association for Computing Machinery,
3190–3199.

[19] Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo Chai, Mingxin Zhou,
and Jiwei Li. 2019. Entity-Relation Extraction as Multi-turn Question Answering.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 1340–1350.

[20] Bill Yuchen Lin and Wei Lu. 2018. Neural Adaptation Layers for Cross-domain
Named Entity Recognition. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, 2012–2022.

[21] Zihan Liu, Genta Indra Winata, Peng Xu, and Pascale Fung. 2020. Coach: A
Coarse-to-Fine Approach for Cross-domain Slot Filling. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 19–25.

[22] Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Ziwei Ji, Samuel Cahyawijaya,
Andrea Madotto, and Pascale Fung. 2021. CrossNER: Evaluating Cross-Domain
Named Entity Recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence. Association for the Advancement of Artificial Intelligence, 13452–
13460.

[23] Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois,
and Sameer Singh. 2021. Entity-Based Knowledge Conflicts in Question An-
swering. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 7052–7063.

[24] Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang, and Heng Ji. 2018. Visual
attentionmodel for name tagging inmultimodal social media. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 1990–1999.

[25] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. 2017. Adversarial training
methods for semi-supervised text classification. In 5th International Conference
on Learning Representations.

[26] Shekoofeh Mokhtari, Ahmad Mahmoody, Dragomir Yankov, and Ning Xie. 2019.
Tagging Address Queries in Maps Search. In Proceedings of the AAAI Conference
on Artificial Intelligence. 9547–9551.

[27] Hoang Van Nguyen, Francesco Gelli, and Soujanya Poria. 2021. DOZEN: Cross-
Domain Zero Shot Named Entity Recognition with Knowledge Graph. In Pro-
ceedings of the 44th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’21). Association for Computing Machinery,
1642–1646.

[28] Claire Nédellec, Robert Bossy, Jin-Dong Kim, and et al. 2013. Overview of BioNLP
Shared Task 2013. In Proceedings of the BioNLP Shared Task 2013 Workshop.

[29] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M. Hospedales, and Tao Xiang.
2020. Incremental Few-Shot Object Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 13846–13855.

[30] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 Shared Task: Language-Independent Named Entity Recognition. In Pro-
ceedings of the seventh conference on Natural language learning at HLT-NAACL
2003-Volume 4. Association for Computational Linguistics, 142–147.

[31] Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han. 2018.
Learning Named Entity Tagger using Domain-Specific Dictionary. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2054–2064.

[32] Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, Wen Wang, and Weiming
Lu. 2021. Locate and Label: A Two-stage Identifier for Nested Named Entity
Recognition. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing. Association for Computational Linguistics, 2782–2794.

[33] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,
Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. 2020. FixMatch:
Simplifying Semi-Supervised Learning with Consistency and Confidence. In
34th Conference on Neural Information Processing Systems (NeurIPS 2020). Curran
Associates, Inc., 596–608.

[34] Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui Liu, Lei Hou, and Juanzi
Li. 2021. Learning from Miscellaneous Other-Class Words for Few-shot Named
Entity Recognition. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing. Association for Computational Linguistics, 6236–6247.

[35] Jing Wang, Mayank Kulkarni, and Daniel Preotiuc-Pietro. 2020. Multi-Domain
Named Entity Recognition with Genre-Aware and Agnostic Inference. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 8476–8488.

[36] Yaqing Wang, Haoda Chu, Chao Zhang, and Jing Gao. 2021. Learning from
Language Description: Low-shot Named Entity Recognition via Decomposed
Framework. In Findings of the Association for Computational Linguistics: EMNLP
2021. Association for Computational Linguistics, 1618–1630.

[37] Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen, Weinan Zhang, Shaodian
Zhang, Yimei Gao, Gen Gu, and et al. 2018. Label-aware Double Transfer Learning
for Cross-Specialty Medical Named Entity Recognition. In Proceedings of NAACL-
HLT 2018. Association for Computational Linguistics, 1–15.

[38] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, and et al. 2020. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, 38–45.

[39] Xingxing Xie, Gong Cheng, Jiabao Wang, Xiwen Yao, and Junwei Han. 2021.
Oriented R-CNN for Object Detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 3520–3529.

[40] Huiyun Yang, Shujian Huang, Xin-Yu Dai, and Jiajun Chen. 2019. Fine-grained
Knowledge Fusion for Sequence Labeling Domain Adaptation. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, 4197–4206.

[41] Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. 2017. Transfer Learn-
ing for Sequence Tagging with Hierarchical Recurrent Networks. In ICLR 2017.

[42] Jason Yosinski, Jeff Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks?. In Proceedings of the 27th International
Conference on Neural Information Processing Systems. Curran Associates, Inc.,
3320–3328.

[43] Bowen Yu, Zhenyu Zhang, Xiaobo Shu, Tingwen Liu, and et al. 2020. Joint
Extraction of Entities and Relations Based on a Novel Decomposition Strategy.
In 24th European Conference on Artificial Intelligence (ECAI).

[44] Ningyu Zhang, Qianghuai Jia, Shumin Deng, Xiang Chen, Hongbin Ye, Hui
Chen, Huaixiao Tou, Gang Huang, Zhao Wang, Nengwei Hua, and Huajun Chen.
2021. AliCG: Fine-grained and Evolvable Conceptual Graph Construction for
Semantic Search at Alibaba. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’21). Association for Computing
Machinery, 3895–3905.

[45] Tao Zhang, Congying Xia, Philip S. Yu, Zhiwei Liu, and Shu Zhao. 2021. PDALN:
Progressive Domain Adaptation over a Pre-trained Model for Low-Resource
Cross-Domain Named Entity Recognition. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 5441–5451.

[46] Joey Tianyi Zhou, Hao Zhang, Di Jin, Hongyuan Zhu,Meng Fang, Rick SiowMong
Goh, and Kenneth Kwok. 2019. Dual Adversarial Neural Transfer for Low-
Resource Named Entity Recognition. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, 3461–3471.

[47] Xingyi Zhou, Dequan Wang, and Philipp Krahenbuhl. 2019. Objects as points. In
arXiv:1904.07850.

Topic 4: Cross Domain IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

311


	Abstract
	1 Introduction
	2 Related Work
	2.1 Cross-domain Named Entity Recognition
	2.2 Task Decomposition

	3 Methodology
	3.1 Problem Formulation
	3.2 Entity Span Detection Sub-task
	3.3 Entity Type Classification Sub-task
	3.4 Modular Interaction Mechanism
	3.5 Target-domain Adversarial Regularization
	3.6 Optimization and Inference

	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results (RQ1)
	4.3 Experimental Analyses

	5 Conclusion and Future Work
	Acknowledgments
	References



